The Crystal Structure of Methyl 2,3-Anhydro-4,6-benzylidene-α-D-mannopyranoside

BY ANNE-MARIE PILOTTI AND BIRGITTA STENSLAND

Institute of Inorganic and Physical Chemistry, University of Stockholm, S-104 05 Stockholm, Sweden

(Received 12 May 1972)

The crystal structure of methyl 2,3-anhydro-4,6-benzylidene- α -D-mannopyranoside, C₁₉H₁₆O₅, has been determined by a direct phase-determination method, and has been refined by least squares to a linear R value of 0.039 for 1283 observed independent reflexions measured by diffractometer. The space group is P_{2_1} , with Z = 2 and unit-cell dimensions a = 8.565, b = 4.531, c = 16.711 Å and $\beta = 90.42^{\circ}$. The C(1)–O(1) bond in the pyranoside ring is 1.395 Å and the average value for C–O bonds in the structure is 1.424 Å. The C(2)–C(3) bond is 1.456 Å, significantly shorter than the average value of 1.512 Å for the other C(sp^3)–C(sp^3) bonds, and atoms C(1), C(2), C(3) and C(4) are coplanar in the presence of the epoxide ring.

Introduction

The structural analysis of methyl 2,3-anhydro-4,6-benzylidene- α -D-mannopyranoside, C₁₉H₁₆O₅, was undertaken primarily to ascertain the effect of the epoxide ring on the conformation of the pyranoside ring and to contribute to data concerning those changes of the pyranoside ring in various sugars attributable to the nature and orientation of the substituents.

Experimental

Weissenberg and rotation photographs indicated monoclinic symmetry. The space group is uniquely determined as $P2_1$ by the optical activity of the compound and the systematic absences of 0k0 reflexions with k odd. The unit-cell dimensions are summarized in Table 1. The X-ray intensities were obtained on an automatic Siemens diffractometer with monochromated Cu $K\alpha$ radiation. A crystal of dimensions $0.123 \times 0.617 \times 0.091$ mm (along the cell axes a, b and c) was mounted with the b axis along the diffractometer φ axis. Intensities for 1542 reflexions to 140° 2θ were measured by θ -2 θ scans. The diffractometer automatically selects a measuring time up to a preset maximum, or inserts attenuators if appropriate, to achieve similar counting statistics for all but the weakest reflexions. Lorentz-polarization and absorption ($\mu = 8.84 \text{ cm}^{-1}$) corrections were applied. Preliminary scale and temperature factors were derived from a Wilson plot. The structure factors were then reduced to normalized structure factor magnitudes |E(hkl)|.

Table 1. Crystal data

Solution and refinement

The crystal structure was solved largely by the \sum_2 direct phase determination method (Karle & Karle, 1966). To define the origin three suitable linearly independent reflexions were chosen and arbitrarily given phase values zero. To choose between the two enantiomorphous solutions the sign of a seminvariant whose phase differs from zero or π must be specified (Hauptman & Karle, 1956). This was accomplished by success-

ively giving the trial phase values $\frac{\pi}{4}$, $\frac{\pi}{2}$, $\frac{3\pi}{4}$ to a general

reflexion. If none of these phases established an enantiomorph another reflexion was tried. Two additional starting phases were evaluated with the \sum_1 relation. The basic set, listed in Table 2, was extended and refined by use of a sum-of-angles formula, and a weighted-sum formula programmed for the IBM 1800 computer by Norrestam (1972),

$$\begin{split} \varphi_{\mathbf{h}} &\sim \langle \varphi_{\mathbf{k}} + \varphi_{\mathbf{h}-\mathbf{k}} \rangle_{\mathbf{k}\mathbf{r}} \\ &\sum_{\mathbf{k}\mathbf{r}} |E_{\mathbf{k}} \cdot E_{\mathbf{h}-\mathbf{k}}| (\varphi_{\mathbf{k}} + \varphi_{\mathbf{h}-\mathbf{k}}) \\ &\varphi_{\mathbf{h}} \sim \frac{\sum_{\mathbf{k}\mathbf{r}} |E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}|}{\sum_{\mathbf{k}\mathbf{r}} |E_{\mathbf{k}} E_{\mathbf{h}-\mathbf{k}}|} \,. \end{split}$$

 Table 2. Phase assignments for specifying the origin and implementing the sum-of-angles formula*

	h	φ_h	$ E_{\hbar} $	
3 0) 10	0	3.24)	
7 0	TT (0	2.97	origin
3 1	12	0	2.67	-
2 2	2 11	$\pi/2$	3.05	enantiomorph
4 0) 12	π	4.82	ς.
8 0) 2	0	3.31 ∫	21

* The origin was shifted along the b axis after the structure had been determined.

Phase determination was not immediately successful. Several determinations were started from different sets of initial phases. The origin-defining reflexions did not Table 3. Positional and anisotropic thermal parameters of the non-hydrogen atoms

The β values refer to the temperature factor expression exp $[-(h^2\beta_{11}+k^2\beta_{22}+l^2\beta_{33}+hk\beta_{12}+hl\beta_{13}+kl\beta_{23})]$. Estimated standard deviations are given in parentheses. Values are $\times 10^4$.

	x	у	z	β_{11}	β_{22}	β_{33}	β_{12}	β_{13}	β_{23}
C(1)	3253 (3)	111 (7)	1079 (2)	126 (4)	378 (12)	28 (1)	81 (11)	8 (3)	-11 (6)
$\tilde{\mathbf{O}}(1)$	4193 (2)	2439 (6)	826 (1)	136 (3)	527 (11)	39 (1)	- 5 (9)	23 (2)	17 (5)
$\tilde{C}(\tilde{2})$	1695 (3)	527 (8)	662 (2)	139 (4)	452 (12)	23 (1)	50 (12)	-6(3)	- 20 (5)
$\tilde{O}(2)$	592 (3)	- 1819 (6)	781 (1)	166 (3)	530 (11)	37 (1)	- 42 (10)	-14 (2)	- 93 (5)
C(3)	282 (3)	1055 (7)	1120 (2)	110 (3)	463 (13)	28 (1)	40 (12)	-26(3)	- 19 (6)
C(4)	432 (3)	1208 (7)	2019 (2)	102 (3)	338 (10)	25 (1)	22 (10)	-7(2)	-8 (5)
O(4)	-656(2)	3265 (6)	2336 (1)	100 (2)	397 (8)	27 (1)	49 (7)	-10 (2)	- 12 (4)
C(5)	2081 (3)	2171 (7)	2229 (2)	99 (3)	357 (11)	24 (1)	42 (10)	-8(2)	-2 (5)
O(5)	3133 (2)	0	1926 (1)	115 (2)	439 (9)	26 (1)	119 (8)	-4 (2)	4 (4)
C(6)	2226 (3)	2394 (8)	3134 (2)	102 (3)	575 (15)	26 (1)	105 (12)	-18 (3)	- 46 (6)
C(7)	-480(3)	3372 (7)	3180 (2)	107 (3)	326 (10)	25 (1)	11 (10)	-6(2)	21 (5)
C(8)	-1670(3)	5446 (7)	3521 (2)	100 (3)	327 (10)	29 (1)	- 29 (9)	9 (2)	14 (5)
C(9)	-1524(3)	6399 (8)	4312 (2)	125 (3)	489 (13)	26 (1)	37 (12)	5 (3)	35 (6)
C(10)	-2631(3)	8274 (9)	4637 (2)	163 (4)	562 (15)	29 (1)	49 (14)	33 (3)	-1(7)
C(11)	- 3898 (3)	9166 (9)	4188 (2)	139 (4)	556 (15)	40 (1)	132 (14)	33 (3)	-21 (7)
C(12)	-4054(3)	8229 (10)	3407 (2)	125 (4)	687 (18)	45 (1)	186 (15)	-15 (3)	- 19 (8)
C(13)	- 2934 (3)	6386 (8)	3072 (2)	122 (3)	559 (14)	32 (1)	99 (13)	-17 (3)	- 39 (7)
C (14)	5797 (4)	2061 (12)	1025 (3)	136 (4)	853 (25)	51 (2)	-67 (18)	16 (4)	-27 (11)

effectively define a primitive cell. In the E map which proved useful, two molecular fragments appeared stacked above each other along the b axis. Since many of the reflexions with large |E| values have k=2 and enter into many sum-of-angles relations, the influence of the origin reflexion $3, 1, \overline{12}$ (Table 2) was probably over-ridden.

Ten atoms belonging to one of the molecular fragments were selected and refined by the least-squares method. The rest of the non-hydrogen atoms were obtained by a combination of least-squares refinements and difference Fourier syntheses. Anisotropic thermal parameters were then assigned to all non-hydrogen atoms and after three cycles of full-matrix least-squares refinement the value of R had fallen to 0.075 for 1288 observed independent reflexions. At this stage a difference synthesis revealed all hydrogen atoms at reasonable positions. After introduction of the hydrogen atoms into the least-squares analysis with isotropic temperature factors the residual was reduced to 0.043.

The observed values of the five strongest structure factors were much smaller than the calculated ones. perhaps because of extinction. When these reflexions were excluded the R value dropped to 0.039. The observed and calculated structure factors for these reflexions are included, however, in Table 5 and marked with asterisks.

The full-matrix least-squares refinements were performed by the program LALS (Gantzel, Sparks & Trueblood, 1966). Hughes's weighting scheme was applied with $F_{o,\min} = 0.95$ and h = 4.0. The atomic scattering factor curves for oxygen, nitrogen and carbon were taken from Freeman (1959) and that for hydrogen from Stewart, Davidson & Simpson (1965).

The positional and thermal parameters of the nonhydrogen atoms are listed in Table 3 with calculated estimated standard deviations, those for the hydrogen atoms in Table 4. The observed and calculated structure factors are given in Table 5.

Table 4 Positional and isotropic thermal parameters of the hydrogen atoms, with estimated standard deviations in parentheses

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(6) Å ² (5)
H(C1) $365(4) - 165(9) 93(2) 3.7$ H(C2) $175(3) 100(7) 14(2) 2.8$	(6) Å ² (5)
H(C2) 175 (3) 100 (7) 14 (2) 2.8	(5)
H(C3) = -50(3) = 212(8) = 88(2) = 3.3	(6)
H(C4) 20 (4) -78 (9) 227 (2) 4.2	(6)
H(C5) 222 (3) 404 (7) 199 (2) 2.5	(5)
H1(C6) $318(3) 317(7) 331(2) 3.2$	(5)
H2(C6) 197 (4) 32 (10) 342 (2) 5.2	. (7)
H(C7) - 56(4) - 153(9) - 337(2) - 3.6	(6)
H(C9) - 64(4) 572(8) 461(2) 4.1	(6)
H(C10) = -255(4) = 892(12) = 516(3) = 6.9	' (9)
H(C11) - 464(4) - 1036(10) - 439(2) - 5.5	(8)
H(C12) - 494(4) 869(9) 303(2) 5.5	(8)
H(C13) = -297(4) = 580(9) = 257(2) = 5.0) (8)
H1(C14) 592 (4) 135 (11) 154 (3) 6.0) (9)
H2(C14) 622 (5) 81 (11) 69 (3) 6·3	(10)
H3(C14) 628 (6) 399 (14) 100 (3) 9.0) (14)

Results and discussion

Atoms belonging to different asymmetric units are labelled as follows.

Superscript	Coordinates	Superscript	Coordinates
None	x, y, z	iv –	$-x, y + \frac{1}{2}, -z$
i	x, y-1, z	v -	$-x, y-\frac{1}{2}, 1-z$
ii x	x+1, y-1, z	vi 1-	$-x, y+\frac{1}{2}, -z$
iii x	x + 1, y, z		

A perspective view of the molecule showing the atom numbering is given in Fig. 1. The bond distances and bond angles involving non-hydrogen atoms are given in Tables 6 and 7. No attempt has been made to correct bond lengths for the effect of thermal motion The average estimated standard deviations in the bond distances and angles involving non-hydrogen atoms are 0.004 Å and 0.3°.

The mean C-C bond distance, 1.384 Å, in the benzene ring is compatible with the expected value 1.394 (5) Å (Sutton, 1965). The $C(sp^3)$ - $C(sp^3)$ bond lengths, excluding C(2)–C(3), have a mean value of 1.512 Å, in agreement with values observed in other carbohydrates (Berman, Chu & Jeffrey, 1967). The bond length C(2)-C(3), 1.456 Å, is shorter than this mean value by $\sim 19\sigma$ in the presence of the epoxide ring. The mean C-O bond length is 1.424 Å, in good agreement with the values in many previous investigations of mono- and disaccharides (Berman, Chu & Jeffrey, 1967). The axial anomeric C(1)–O(1) bond distance, 1.395 Å, is shorter than this mean value by $\sim 7\sigma$. The magnitude of this shortening is in the range observed for unsubstituted pyranose sugars (Berman & Kim, 1968). The C-H bond distances range from 0.88 to 1.08 Å, mean value 0.94 Å, in good agreement with values found in some precisely determined X-ray structures (Stewart, Davidson & Simpson, 1965). Least-squares planes through portions of the molecule are given in Table 8. The pyranoside ring has been flattened, relative to the ordinary chair form, in the presence of the epoxide ring. Atoms C(1), C(2), C(3) and C(4) are coplanar within

Table 5. Observed and calculated structure ampl	litudes
---	---------

The columns use the running index k, $10|F_o|$ and $10|F_c|$ respectively.

1	26 25 8 17 26 9 12 50 12 11 9 14 71 9 14 71	Frank Frank		Horney Torr		And Earson in	100 100 100 100 100 100 100 100 100 100	Same Frank							
T ~ T ~ ~ T	9 L= 2 18 L# 21 18 9 L* 32 25 25	1 10-1 10-	46 10: 157 12: 157		11 11 11 11 11 11 11 11 11 11 11 11 11		1444 1445 1444 1445				42 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	5 - 1 - 1 - 1 - 1	1): 113 11: 125 11: 12	T avert c.	
	27° 26 11° 10 9 L 50 21° 20 34° 21 9 L 6	· · · · · · · · · ·	49 94 115 115 1 (1-12 1 (1-12 1 (1-12 1 (1-12 1 (1-12) 1 (1-12) 1 (1-12)	0.000 to		i same i		i town i							
HOL HOL	12 10 9 1 40 31 31 9 10 17 12 12		43 41 33 82 30 24 1 L=-14 30 24 1 L=-14 35 36 67 68	a formed and	3) 37 3 22 31 1960 1951 1960 1951 1960 1951	PANE PANE	()) () ()) ())			2 - N.B 2-100		Taxe I ave		~~1 ~ c 1 ~	
	28 28 26 10 35 32 10 17 15 10 17 15 10 17 15	1010	1 (1-) 1 (1-)	The second second	122 125 67 12 18 17 2 12-14 35 35 2 14-15	in leve		and the second	11.22 (SP12	- Low Town		Serve force		1	8 (1) 14 (1-)
·····	19 13 10 27 - 25	inci wei	1 (1-17 17 17 10 10 10 10 10 10 10 10 10 10 10 10 10			· · · · · · · · · · · · · · · · · · ·		I E	4 200 10 100 10 100 10 100 100 100 100 10	i nuel -		*** Total		1 - 1 1	4 14 17 18 17 9 35 34
0	152 152 152 152 152 152 152 152 152 152	*-oi oi -o	21 10 15 16 15 16 16 10 10		16 13 2 1-15 2 2 2 33 2 1-15 2 2 2 33 2 1-15 2 2 2 33 2 1-15 2 2 33 2 1-15 2 33 2 1-15 2 33 2 1-15 3 3 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	v. 1. v v. 1. v		101 111 11				<u></u>			
	2103 1 210 1 200 1 20 1 2		501 - 2 501	10-00-10		Con Forward									
10-mm-0	195 310 141 175 144 1277 14 1277 14 11 1 11	i un une i	2 135 135 155 155 155 155 155 155 155 155	inne jumn	12072 - 30040 12072 - 30040	و مدسمة ا	4 22 133 142 145 14 14 14 14	1 1	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	eneres e				101 201 20	
17345 10124	121 2027 2027 2087 20 2087 20 2077 20	omenan fun	521 156 521 156 521 166 21 166 21 166	an Ionunan	14 1470 2711			1 I	1727 - 1775 1727 - 1775	100 10 1	· · · · · · · · · · · · · · · · · · ·			1 1 1 1 1 1	······································
	13 17 18 14 17 1 1 17 1 18 14 17 1 1 17 14 18 14 17 14 14 14 14 14 14 14 14 14 14 14 14 14	runol run	1412 - 141151 2013977	1	3 LF -5 1-6 155 1-7 155 27 75 44 45	funct to		10.00 × 10.				west of		1 	ំណាទ ខ

Fig. 1. A perspective view of the molecule.

Table (6. Bond	distances	between	non-hy	drogens	atoms
with	estimate	ed standar	d deviat	ions in	parenth	eses

C(1) - O(1)	1·395 (4) Å
C(1) - C(2)	1.513 (3)
C(1) - O(5)	1.420 (3)
O(1) - C(14)	1.422 (4)
C(2) - O(2)	1.437 (4)
C(2) - C(3)	1.456 (3)
C(3) - O(2)	1.446 (4)
C(3) - C(4)	1.509 (3)
C(4) - O(4)	1.423(3)
C(4) - C(5)	1.517 (3)
O(4) - C(7)	1.417 (2)
C(5) - O(5)	1.429 (3)
C(5) - C(6)	1.521 (3)
C(6) - O(6)	1.435 (3)
O(6) - C(7)	1.413 (3)
C(7) - C(8)	1.502 (3)
C(8) - C(9)	1.395 (3)
C(8) - C(13)	1.380 (3)
C(9)C(10)	1.387 (4)
C(10) - C(11)	1.375 (4)
C(11)–C(12)	1.378 (4)
C(12) - C(13)	1.392 (4)

 Table 7. Interatomic angles with estimated standard deviations

C(1) - O(1) - C(14)	113·3°	0∙3°
O(1) - C(1) - C(2)	106.0	0.3
O(1) - C(1) - O(5)	112.0	0.2
C(1) - C(2) - C(3)	120.8	0.2
C(1) - C(2) - O(2)	115.0	0.3
C(2) = O(2) $C(3)$	60.7	0.2
C(2) - C(3) - C(4)	117.8	0.2
O(2) - C(3) - C(2)	59.4	0.2
O(2) - C(3) - C(4)	114.6	0.3
C(3) - C(2) - O(2)	60.0	0.2
C(3) - C(4) - C(5)	108.4	$0.\overline{2}$
C(3) - C(4) - O(4)	110.5	0.2
C(4) - O(4) - C(7)	109-1	0.2
C(4) - C(5) - O(5)	108.0	0.2
C(4) - C(5) - C(6)	108.6	0.2
O(4) - C(4) - C(5)	109.6	0.2
O(4) - C(7) - O(6)	111.2	0.2
O(4) - C(7) - C(8)	109.4	0.2
C(5) - O(5) - C(1)	112.2	0.2
C(5) - C(6) - O(6)	107.2	0.2
O(5) - C(1) - C(2)	113.2	0.2
O(5) - C(5) - C(6)	110.5	0.2
C(6) - O(6) - C(7)	112.0	0.3
O(6) - C(7) - C(8)	108.8	0.3
C(7) - C(8) - C(9)	119.8	0.2
C(7) - C(8) - C(13)	121.2	0.2
C(8) - C(9) - C(10)	120.2	0.3
C(9) - C(8) - C(13)	119.0	0.3
C(9) - C(10) - C(11)	120.4	0.3
C(10) - C(11) - C(12)	119.8	0.3
$\vec{C}(11) - \vec{C}(12) - \vec{C}(13)$	120.2	0.3
C(12) - C(13) - C(8)	120.4	0.3

0.003 Å. O(5) and C(5), however, deviate by -0.147and 0.645 Å from this plane. Ring *B* has a slightly distorted chair conformation. The four atoms C(6), O(6), C(4) and O(4) of ring *B* are coplanar while atoms C(7) and C(5) lie 0.705 Å below and 0.666 Å above this plane respectively.

Table 8. Least-squares planes The planes are described in terms of a vector basis $\mathbf{m} \| \mathbf{a}^*, \mathbf{n} \| \mathbf{b}$ and $\mathbf{p} \| \mathbf{c}$

Plane A: 0.1644 m + 0.9848 n - 0.0561 p = 0.4092Plane B: -0.4075 m - 0.7326 n + 0.5452 p = 1.2812Plane C: -0.5191 m - 0.7958 n + 0.3117 p = 0.6138

P	ane A	Pla	ne B	Plane C			
C(1)	−0·002 Å	C(4)	0∙005 Å	C(8)	0·002 Å		
C(2)	0.003	O(4)	-0.005	C(9)	0.005		
C(3)	-0.003	C(5)*	-0.705	C(10)	-0.007		
C(4)	0.002	C(6)	0·00 5	C(11)	0.003		
C(5)*	0.645	O(6)	0.005	C(12)	0.004		
O(5)*	− 0·147	C(7)*	0.666	C(13)	- 0.006		

* These atoms are not included in the least-squares planes.

The intermolecular packing arrangement is projected normal to the *b* axis in Fig. 2. The intermolecular distances, given in Table 9, are normal except for the distances $O(2)-C(3^{1})$, 3.289 Å, and $C(2)-O(2^{1v})$, 3.321 Å, both significantly shorter than the normal van der Waals separation, 3.40 Å, between methyl carbon and oxygen (Pauling, 1960).

The present investigation has received financial support from the Tri-Centennial Fund of the Bank of Sweden and from the Swedish Natural Science Research Council. The authors wish to express their sincere gratitude to Professor Peder Kierkegaard for his active and stimulating interest in this work. Thanks are due to Dr Åke Pilotti for the supply of crystals

Fig. 2. The structure as seen in projection down the *b* axis. \bigcirc Carbon \bullet Oxygen

2824

Table 9. Intermolecular distances less than 3.8 Å

$C(1) - O(1^{i})$	3·594 Å
$O(1) - C(14^{vi})$	3.736
$C(2) - O(2^{iv})$	3.321
$O(2) - O(2^{iv})$	3.597
$O(2) - C(2^{i})$	3.600
$O(2) - C(3^{i})$	3.289
$O(2) - C(4^{i})$	3.780
$O(2) - O(4^{i})$	3.592
$C(3) - O(2^{iv})$	3.397
$C(4) - O(4^{i})$	3.756
$O(5) - C(5^{i})$	3.696
$O(5) - C(12^{ii})$	3.534
$C(6) - C(12^{ii})$	3.728
$C(6) - C(10^{v})$	3.759
$O(6) - C(10^{v})$	3.582
$C(7) - C(8^{i})$	3.777
$C(7) - C(9^{i})$	3.793
$C(8) - C(11^{1})$	3.608
$C(14) - O(4^{111})$	3.772

used in the work, for valuable discussions and assistance with the collection of the data. The authors also wish to thank Dr Rolf Norrestam for helpful discussions and Dr Don Koenig for correcting the English of this paper.

References

- BERMAN, H. M., CHU, S. S. C. & JEFFREY, G. A. (1967). Science, 157, 1576.
- BERMAN, H. M. & KIM, S. H. (1968). Acta Cryst. 24, 897.
- FREEMAN, A. J. (1959). Acta Cryst. 12, 261.
- GANTZEL, P. K., SPARKS, R. A. & TRUEBLOOD, K. N. (1966). World List of Crystallographic Computer Programs. 2nd Ed. Program 384.
- HAUPTMAN, H. & KARLE, J. (1956). Acta Cryst. 9, 635.
- HUGHES, E. W. (1941). J. Amer. Chem. Soc. 63, 1737.
- KARLE, I. L. & KARLE, J. (1966). Acta Cryst. 21, 860.
- NORRESTAM, R. (1972). Acta Cryst. In the press.
- PAULING, L. (1960). The Nature of the Chemical Bond. 3rd Ed., p. 260. Ithaca: Cornell Univ. Press.
- STEWART, R. F., DAVIDSON, E. R. & SIMPSON, W. T. (1965). J. Chem. Phys. 42, 3175.
- SUTTON, L. E. (1965). Tables of Interatomic Distances and Configuration in Molecules and Atoms. Supplement 1956–1959. London: The Chemical Society.

Acta Cryst. (1972). B28, 2825

Structure and Absolute Configuration of the Alkaloid Clivorine*

By Karin Bjåmer Birnbaum[†]

Biochemistry Laboratory, National Research Council of Canada, Ottawa, Canada, K1A 0R6

(Received 17 March 1972)

Clivorine hydrate, $C_{21}H_{27}NO_7$. H_2O , m.p. 147–149 °C, crystallizes in the orthorhombic space group $P2_12_12_1$ with four molecules in a unit cell of dimensions a=12.765 (1), b=14.772 (1), c=11.145 (1) Å (at -160 °C). The densities are: $D_x=1.34$ g.cm⁻³ (at -160 °C), $D_m=1.28$ g.cm⁻³ (at room temperature). The structure was determined by the symbolic-addition method from data collected at -160 °C on a four-circle diffractometer using the $\theta/2\theta$ scan technique. It was refined by the block-diagonal least-squares method to R=0.0388 for 2506 observed reflexions. There is a trans-annular interaction between the nitrogen atom and the carbonyl carbon atom across the eight-membered ring: the N···C(8) distance is 1.993 (3) Å and the C(8)=-O(6) bond is 1.258 (3) Å. Molecules of clivorine are hydrogen bonded *via* the water molecules and form spirals extended in the direction of the c axis.

Introduction

The alkaloid clivorine was isolated from *Ligularia* clivorum Maxim. by Klásek, Vrublovský & Šantavý (1967). On the basis of chemical evidence and p.m.r. spectral data the structure (I), which has the empirical formula $C_{21}H_{29}NO_8$, was ascribed to it (Klásek, Sedmera & Šantavý, 1970). In order to determine the configuration at C(3), C(4) and C(5) it was decided to carry out an X-ray analysis. The result, reported in a preliminary communication (Birnbaum, Klásek, Sedmera, Snatzke, Johnson & Šantavý, 1971), showed the structure to be the hydrate of (II) with the empirical formula $C_{21}H_{27}NO_7$. H_2O .

^{*} Issued as N.R.C.C. No. 12763.

[†] Guest worker.